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Approximate Controllability and Approximate Observability of Singular
Distributed Parameter Systems
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Abstract—Necessary and sufficient conditions for the approx-
imate controllability and approximate observability of a singular
distributed parameter system are obtained in the sense of distri-
butional solution. These general results are used to examine the
approximate controllability and approximate observability of the
Dzektser equation in the Theory of Seepage.

Index Terms—Approximate controllability, approximate observ-
ability, distributional solution, singular distributed parameter sys-
tems.

I. INTRODUCTION

Singular distributed parameter systems are also called degener-
ate evolution systems, generalized distributed parameter systems, and
infinite-dimensional descriptor systems (e.g., [1]–[3]), etc. They appear
in the study of heat flow, transmission lines, gas absorption, propaga-
tion of longitudinal waves in DNA molecules, and so on (e.g., [4],
[5]). There is an essential distinction between singular and ordinary
distributed parameter systems (e.g., [1]–[11]). Under disturbance, not
only singular distributed parameter systems lose stability, but also great
changes take place in their structure, such as leading to pulse behavior.

One of the most important problems for the study of singular dis-
tributed parameter systems is controllability. Many important results
for the controllability of distributed parameter systems have been ob-
tained (e.g., [10], Ch.4; [11], Ch.11), and the confluent Vandermonde
matrices play an important role in it (e.g., [12]). But the results for the
controllability of singular distributed parameter systems are very little.
The approximate controllability, exact controllability, and exact null
controllability for singular distributed parameter systems were stud-
ied in [1], [3], [13]–[16], respectively, in the sense of mild solution.
The results show that the controllability of singular distributed param-
eter systems is quite different from distributed parameter systems. For
example, in the case of the distributed parameter systems, approxi-
mate controllability is a dual of approximate observability. However,
approximate controllability is not necessarily the dual of the approx-
imate observability to singular distributed parameter systems in the
sense of mild solution. For a singular distributed parameter system,
pulse behavior may exist at initial time (e.g., [8]) which may reduce
system performance and even damage the system. Therefore, we have
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to deal with the controllability of singular distributed parameter sys-
tems in the sense of distributional solution.

In this paper, the approximate controllability and approximate ob-
servability of a class of singular distributed parameter systems are
studied in the sense of distributional solution. The dual principle is
proved to be true for these two concepts.

Notations: Throughout the paper, X, Y , and U denote Hilbert
spaces; L(X, Y ) denotes the space of all bounded linear operators
from X into Y ; L(X) = L(X, X); CD (X, Y ) denotes the set of all
closed linear operators from X to Y whose domain is dense in X ;
CD (X) = CD (X, X); Cn (I, X) denotes the set of n times continu-
ously differentiable X-valued functions on interval I ; domA denotes
the domain of operator A; ranA denotes the closure of ranA; A∗ de-
notes the dual operator of A; < ·, · >X denotes the inner product on
the space X ; ‖ · ‖X denotes the norm induced by the inner product on
the space X ; L2 ((0, T ), U ) denotes the class of Lebesgue measurable
U -valued functions with

∫ T

0 ‖x(t)‖2
U dt < +∞ and

X × Y =
{[

x
y

]
: x ∈ X, y ∈ Y

}
.

The singular distributed parameter system

Eẋ(t) = Ax(t) + Bu(t), (1)

where E ∈ L(X, Y ), A ∈ CD (X, Y ), and B ∈ L(U, Y ), is an ab-
stract form of various partial differential equations and systems of
equations which occur in heat flow, transmission lines, gas absorp-
tion, propagation of longitudinal waves in DNA molecules, motion of
ground waters with a free surface, diffusive-convective system with
limited manipulating variables, physically meaningful constraints, and
so on (see, e.g., [4], [5], [17]–[19]).

For the sake of convenience, we introduce the following definition.
Definition 1: System (1) is called the regular system with order

n (positive integer) if there exist Hilbert spaces X1 , X2 and P ∈
L(Y, X1 × X2 ), Q ∈ L(X1 × X2 , X), where P and Q are bijective,
such that

PEQ =

[
I1 0

0 N

]
∈ L(X1 × X2 )

PAQ =

[
K 0

0 I2

]
∈ CD (X1 × X2 )

and PB = [ B 1
B 2

] ∈ L(U, X1 × X2 ), where N is a nilpotent operator
with order n ([8]); K ∈ CD (X1 ) is the generator of the strongly con-
tinuous semigroup ([10, p. 15]); Ik ∈ L(Xk ) is the identical operator
(k = 1, 2).

In this case, the operator P and Q transfer (1) into the following
decoupled system on the Hilbert space X1 × X2 :

ẋ1 (t) = Kx1 (t) + B1u(t) (2)

Nẋ2 (t) = x2 (t) + B2u(t) (3)
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where [ x 1
x 2

] = Q−1x, x1 ∈ X1 , x2 ∈ X2 . The system represented by
(2)–(3) is called the standard form of regular system (1).

From [7, pp. 135–138], we obtain that if A is a strongly (E, p)-radial
operator in (1), then (1) is the regular singular distributed parameter
system with finite order n, and n ≤ p + 1.

Here we recall the definitions of (E, p)-radial and strongly (E, p)-
radial operators, respectively.

An operator A is called (E, p)-radial if
i) ∀μ ∈ R+ μ ∈ {λ ∈ C : (λE − A)−1 ∈ L(Y, X)}
ii) ∃K ∈ R+ ∀μk ∈ R+ (k = 0, 1, . . . , p) ∀n ∈ N

max{‖[∏p
k=0 ((μk E − A)−1E)]n ‖L (X )

∥∥∥∥∥
[

p∏
k=0

E(μk E − A)−1

]n ∥∥∥∥∥
L (Y )

⎫⎬
⎭ ≤ K/

p∏
k=0

μn
k .

An operator A is called strongly (E, p)-radial if it is (E, p)-radial,
and there exists a subspace Y0 dense in Y such that∥∥∥∥∥A(λE − A)−1

[
p∏

k=0

E(μk E − A)−1

]
f

∥∥∥∥∥
Y

≤ const(f )

[
λ

p∏
k=0

μk

]−1

∀f ∈ Y0 for every λ, μ0 , μ1 , . . . , μp ∈ R+ , and

∥∥∥∥∥
[

p∏
k=0

((μk E − A)−1E)

]
(λE − A)−1

∥∥∥∥∥
L (Y ,X )

≤ K

[
λ

p∏
k=0

μk

]−1

∀λ, μ0 , μ1 , . . . , μp ∈ R+ . For more details, see [7, Ch. 2].
In addition, from [7, pp. 119–138], we see that many systems are

regular, such as the Navier–Stokes equation; the robotic system; degen-
erate system of ordinary differential equations, which is the general-
ization of the well-known Leontief’s system of inter-industry balance;
the equation modeling the free surface evolution of a filtered fluid;
among others. Subsystem (2) is a classical system in control theory.
The properties of (3) determine the peculiarities of (1). For example, it
is known that controls from the class Cn−1 ([0, +∞), U ) must be used
to solve (3) in the weak sense (e.g., [16]). This paper investigates the ap-
proximate controllability of (1) under some additional hypotheses, or,
equivalently, of (2)–(3) and the corresponding approximate observabil-
ity. In Section II, the definition of approximate controllability of (2)–(3)
is introduced. Some necessary and sufficient conditions concerning the
approximate controllability are given. In Section III, the concept of ap-
proximate observability is introduced. Some necessary and sufficient
conditions concerning this concept are obtained. The dual principle of
the approximate controllability and approximate observability is given
in Section IV. In Section V, the general results obtained are used to
examine the approximate controllability and approximate observability
of the Dzektser equation in the Theory of Seepage. Finally, in the last
section, we summarize our results.

Here we give several auxiliary results. As in the distributed parameter
systems case, approximate controllability is described by the trajectory
of the system. Since the trajectories of two equivalent systems are re-
lated by a constant revertible bounded linear operator, the approximate
controllability is invariant under system equivalence. Note that every
regular singular distributed parameter system is equivalent to (2)–(3),
without loss of generality; in the following, we assume that system (1)
is of the form (2)–(3).

Theorem 1: ([8]) Suppose that (2)–(3) is the standard form of a
regular system with order n, u ∈ Cn−1 ([0, +∞), U ), and there exist

constants M > 0, a > 0 such that

‖u(k ) (t)‖U ≤ Meat , k = 0, 1, . . . , n − 1.

Then, for each initial [ x 1 0
x 2 0

] ∈ X1 × X2 , there exists a unique distribu-
tional solution of (2)–(3)[

x1 (t)

x2 (t)

]
=

[
eK tx10 +

∫ t

0 eK (t−τ )B1u(τ )dτ

x2pulse(t) + x2normal(t)

]
(4)

where eK t denotes the strongly continuous semigroup generated by K ,

x2pulse(t) = −
n−1∑
k=1

Nk δ(k−1) (t)

[
x20 +

n−1∑
k=0

Nk B2u
(k ) (0)

]

x2normal(t) = −∑n−1
k=0 Nk B2u

(k ) (t), δ(t) is the Dirac function,
δ(k ) (t) is the kth derivative of δ(t).

Here we recall the definition of δ(k ) (t).
Let D(R) denote the space of infinite times continuously differen-

tiable maps from R to R with compact support. δ(k ) (t) is defined by∫ +∞
−∞ δ(k ) (τ )g(τ )dτ = (−1)k g(k ) (0) for every g ∈ D(R). For more

details, see [20, Ch.2].
It is well known that a mild solution x1 (t) of (2) is expressible for

x10 ∈ X1 , u ∈ L2 ((0, T ), U ) by the formula

x1 (t) = eK tx10 +
∫ t

0
eK (t−τ )B1u(τ )dτ (5)

where the integral is understood in the sense of Bochner ([10, p. 104]).
Note that the first line of the matrix in (4), which gives a solution of

(2)–(3), is a mild solution of (2), while the second line, which is a sum
over k, is a distributional solution of (3), and

x2 (t) = −
n−1∑
k=0

Nk B2u
(k ) (t), t > 0. (6)

In the following discussions, we shall assume by default that the
solutions are distributional.

Definition 2: A number λ ∈ C is called the E-eigenvalue of the
operator A if there exists a vector x 	= 0 such that λEx = Ax. Such a
vector x is called the E-eigenvector of the operator A corresponding
to the E-eigenvalue λ.

It is easily verified that the E-eigenvectors corresponding to the same
E-eigenvalue form a subspace of X .

II. APPROXIMATE CONTROLLABILITY

Consider the system described by (2)–(3). The extension of the con-
cept of approximate controllability from distributed parameter systems
to singular distributed parameter systems is as follows.

Definition 3: System (2)–(3) is called approximately controllable
on [0, T ] (for some finite T > 0) if, for any state xT ∈ X1 × X2 ,
any initial state x0 ∈ X1 × X2 and any ε > 0, there exists a control
u ∈ Cn−1 ([0, T ], U ) such that the solution x(t) of the system satisfies
‖x(T ) − xT ‖X 1 ×X 2 < ε.

Our purpose here is to establish necessary and sufficient conditions
for the approximate controllability of (2)–(3) with bounded operators
B1 and B2 .

As for the approximate controllability of (2), we have the following
results.

Theorem 2: ([10, p. 148]) Subsystem (2) is approximately control-
lable on [0, T ] if and only if any one of the following conditions hold:

i)
∫ T

0 eK τ B1B
∗
1e

K ∗τ dτ > 0
ii) B∗

1e
K ∗τ z = 0 on [0, T ] ⇒ z = 0.
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According to Theorem 2, we obtain the following proposition.
Proposition 1: Subsystem (2) is approximately controllable on [0, T ]

if and only if

G(f, T ) =
∫ T

0
f 2 (τ )eK τ B1B

∗
1e

K ∗τ dτ > 0

for any polynomial f (τ ) ∈ R not identically zero and

ranG(f, T ) = X1 .

Proof: We only need to prove kerG(f, T ) = kerG(1, T ) by the
proof of Theorem 2 ([10, p. 149]). Since f (τ ) can have only finitely
many zeros in the interval [0, T ], it follows that f (τ )B∗

1e
K ∗τ z = 0 on

[0, T ] if and only if B∗
1e

K ∗τ z = 0 on [0, T ] if and only if kerG(f, T ) =
kerG(1, T ). �

As for the approximate controllability of (3), we have the following
theorem.

Theorem 3: Subsystem (3) is approximately controllable on [0, T ]
if and only if

ran[B2 NB2 · · · Nn−1B2 ] = X2 . (7)

Proof: Necessity. Approximate controllability of (3) on [0, T ] im-
plies that for any state x2T ∈ X2 , any initial state x20 ∈ X2 , and any
ε > 0, there exists a control u ∈ Cn−1 ([0, T ], U ) such that the solution
given by (6) satisfies ‖x2 (T ) − x2T ‖X 2 < ε. Therefore, (7) is true.

Sufficiency: Since (7) holds, for any state x2T ∈ X2 , any initial state
x20 ∈ X2 , and any ε > 0, there exist βk ∈ U, k = 0, 1, . . . , n − 1 such
that ‖ −∑n−1

k=0 Nk B2βk − x2T ‖X 2 < ε. By (6), it follows that, for
any t > 0, the corresponding solution is determined only by the value
u(k ) (t), k = 0, 1, . . . , n − 1. Therefore, if a control u(t) satisfies

u(k ) (T ) = βk , k = 0, 1, . . . , n − 1 (8)

then, (6) yields that x2 (T ) = −∑n−1
k=0 Nk B2βk . In order to build a

control u ∈ Cn−1 ([0, T ], U ) satisfying (8), let

u(t) =
n−1∑
k=0

(t − T )k

k!
βk

then, (8) holds true. Hence, (3) is approximately controllable. �
Now we discuss the approximate controllability of (2)–(3).
Theorem 4: System (2)–(3) is approximately controllable on [0, T ]

if and only if both (2) and (3) are approximately controllable on [0, T ].
Proof: The necessity is obvious. We only need to prove the suffi-

ciency. Assume x10 , x1T ∈ X1 , x20 , x2T ∈ X2 , and ε > 0. We have
to find u ∈ Cn−1 ([0, T ], U ) such that

x1 (t) = eK tx10 +
∫ t

0
eK (t−τ )B1u(τ )dτ

x2 (t) = −
n−1∑
k=0

Nk B2u
(k ) (t), t > 0

and

‖x1 (T ) − x1T ‖X 1 < ε, ‖x2 (T ) − x2T ‖X 2 < ε. (9)

We choose u(t) = u1 (t) + u2 (t). Thus,

x1 (t) = eK tx10 +
∫ t

0
eK (t−τ )B1u1 (τ )dτ

+
∫ t

0
eK (t−τ )B1u2 (τ )dτ

x2 (t) = −
n−1∑
k=0

Nk B2u
(k )
1 (t) −

n−1∑
k=0

Nk B2u
(k )
2 (t).

We choose u1 (t) to be of the form

u1 (t) = tn (t − T )n v(t) (10)

for some v ∈ Cn ([0, T ], U ). Thus, u
(k )
1 (T ) = 0, if k < n. By Theo-

rem 3, there exists u2 ∈ Cn−1 ([0, T ], U ) such that∥∥∥∥∥−
n−1∑
k=0

Nk B2u
(k )
2 (T ) − x2 (T )

∥∥∥∥∥
X 2

< ε.

From Proposition 1, for any polynomial f ∈ R not identically zero,
there exists y ∈ X1 , such that∥∥∥∥

∫ T

0
f 2 (τ )eK (T −τ )B1B

∗
1e

K ∗(T −τ )ydτ

−
[
x1T − eK T x10 −

∫ T

0
eK (T −τ )B1u2 (τ )dτ

]∥∥∥∥
X 1

< ε. (11)

Let f (τ ) = τ n (τ − T )n , v(τ ) = f (τ )B∗
1e

K ∗(T −τ )y. Then, by (10)
and (11), u1 (τ ) = f 2 (τ )B∗

1e
K ∗(T −τ )y and∥∥∥∥

∫ T

0
f 2 (τ )eK (T −τ )B1B

∗
1e

K ∗(T −τ )ydτ

−
[
x1T − eK T x10 −

∫ T

0
eK (T −τ )B1u2 (τ )dτ

]∥∥∥∥
X 1

< ε.

Thus, (9) is true. Therefore, (2)–(3) is approximately controllable on
[0, T ]. �

III. APPROXIMATE OBSERVABILITY

In this section, we introduce the dual concept-approximate observ-
ability. This type of observability is concerned with the ability to re-
construct the state from the system output. Therefore, different from
Section II, in this section, the system to be considered is the following
form: ⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

[
I1 0

0 N

] [
ẋ1 (t)

ẋ2 (t)

]
=

[
K 0

0 I2

] [
x1 (t)

x2 (t)

]

y(t) = [D1 D2 ]

[
x1 (t)

x2 (t)

] (12)

where D1 and D2 are bounded linear operators from X1 and X2 to
Hilbert space Z , respectively. The two subsystems of (12) are assumed
to be ⎧⎨

⎩
ẋ1 (t) = Kx1 (t)

y1 (t) = D1x1 (t)
(13)

and ⎧⎨
⎩

Nẋ2 (t) = x2 (t)

y2 (t) = D2x2 (t).
(14)
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Definition 4: System (12) is called approximately observable on
[0, T ] (for some finite T > 0) if ker(D1e

K t ) ≡ {0} ∀t ∈ [0, T ] and if
y2 (t) ≡ 0, t ∈ [0, T ] then x2 (0) = 0.

Clearly, Definition 4 reduces to the approximate observability in
distributed parameter system theory when system (12) is a distributed
parameter system. By Definition 4, we can obtain the following theo-
rem.

Theorem 5: Let (13) and (14) be two subsystems of the regular
system (12).

i) ([10, p.156]) Subsystem (13) is approximately observable on
[0, T ] if and only if D1e

K t z = 0 on [0, T ] ⇒ z = 0.
ii) Subsystem (14) is approximately observable on [0, T ] if and only

if

ran[D∗
2 N ∗D∗

2 · · · (N ∗)n−1D∗
2 ] = X2 .

iii) System (12) is approximately observable on [0, T ] if and only if
both (13) and (14) are approximately observable on [0, T ].

Proof of conclusion (ii): By Definition 4, subsystem (14) is ap-
proximately observable on [0, T ] means that x2 (0) = 0 if and only if
y2 (t) ≡ 0, t ∈ [0, T ]. By (4), we have⎧⎨

⎩
y2 (t) = −∑n−1

k=1 δ(k−1) (t)D2N
k x2 (0), t ∈ (0, T ]

y2 (0) = D2x2 (0).

According to the linear independencies of δ(k−1) (t) (k = 1, 2, . . . ,
n − 1), we have that⎧⎨

⎩
y2 (t) = −∑n−1

k=1 δ(k−1) (t)D2N
k x2 (0) ≡ 0, t ∈ (0, T ]

y2 (0) = D2x2 (0) = 0

if and only if D2N
k x2 (0) = 0 (k = 0, 1, 2, . . . , n − 1). Therefore,

x2 (0) = 0 if and only if

ker

⎡
⎢⎢⎢⎢⎢⎣

D2

D2N

...

D2N
n−1

⎤
⎥⎥⎥⎥⎥⎦ = {0}.

By Theorem A.3.16 of [10], this is equivalent to

ran[D∗
2 N ∗D∗

2 · · · (N ∗)n−1D∗
2 ] = X2 .

Proof of conclusion (iii): By Definition 4, system (12) is approximately
observable on [0, T ] means that [ x 1 (0)

x 2 (0) ] = 0 if and only if y(t) ≡ 0,

t ∈ [0, T ]. According to (4), we have⎧⎪⎪⎨
⎪⎪⎩

y1 (t) = D1e
K tx1 (0), y2 (0) = D2x2 (0)

y2 (t) = −∑n−1
k=1 δ(k−1) (t)D2N

k x2 (0), t ∈ (0, T ]

y(t) = y1 (t) + y2 (t).

In view of the special forms of y1 (t) and y2 (t), we know that y(t) ≡ 0,
t ∈ [0, T ] if and only if y1 (t) ≡ 0 and y2 (t) ≡ 0, t ∈ [0, T ]. Therefore,
by the proofs of conclusions (i) and (ii) of the theorem, [ x 1 (0)

x 2 (0) ] = 0 if

and only if D1e
K tx1 (0) = 0 on [0, T ] ⇒ x1 (0) = 0, and

ran[D∗
2 N ∗D∗

2 · · · (N ∗)n−1D∗
2 ] = X2 .

Thus, the third conclusion holds in view of the first two conclusions of
the theorem. �

IV. THE DUAL PRINCIPLE

In this section, we deal with the dual principle for singular distributed
parameter system. Let us first introduce the dual system of a regular

singular distributed parameter system in the form of⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
I1 0
0 N

] [
ẋ1 (t)
ẋ2 (t)

]

=

[
K 0
0 I2

] [
x1 (t)
x2 (t)

]
+

[
B1

B2

]
u(t)

y(t) = [D1 D2 ]

[
x1 (t)
x2 (t)

]
.

(15)

The two subsystems of (15) are{
ẋ1 (t) = Kx1 (t) + B1u(t)

y1 (t) = D1x1 (t)
(16)

and {
Nẋ2 (t) = x2 (t) + B2u(t)

y2 (t) = D2x2 (t).
(17)

Definition 5: The following system⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
I1 0
0 N ∗

] [
ż1 (t)
ż2 (t)

]

=

[
K∗ 0
0 I2

] [
z1 (t)
z2 (t)

]
+

[
D∗

1

D∗
2

]
v(t)

w(t) = [B∗
1 B∗

2 ]

[
z1 (t)
z2 (t)

]
(18)

is called the dual system of (15).
If (18) is the dual system of (15), then the two subsystems of (18)⎧⎨

⎩
ż1 (t) = K∗z1 (t) + D∗

1v(t)

w1 (t) = B∗
1z1 (t)

(19)

and ⎧⎨
⎩

N ∗ż2 (t) = z2 (t) + D∗
2v(t)

w2 (t) = B∗
2z2 (t).

(20)

are the dual systems of (16) and (17), respectively.
The following dual principle reveals the relation between the ap-

proximate controllability (approximate observability) of system (15)
and the approximate observability (approximate controllability) of its
dual system (18).

Theorem 6: System (15) is approximately controllable (approxi-
mately observable) on [0, T ] if and only if its dual system (18) is
approximately observable (approximately controllable) on [0, T ].

Proof: It follows from Theorems 2–5 that the following equivalence
relations hold: System (15) is approximately controllable if and only if{

B∗
1e

K ∗τ α = 0(τ ∈ [0, T ]) ⇒ α = 0
ran[B2 NB2 · · · Nn−1B2 ] = X2

if and only if subsystems (19) and (20) are approximately observable
on [0, T ] and if and only if system (18) is approximately observable on
[0, T ]. �

Remark 1: If B1 ∈ L(U, D(K∗)′) is an admissible control operator
for eK t ([11, pp. 355–356]), B2 ∈ L(U, X2 ), D1 ∈ L(D(K), Z) is
an admissible observation operator for eK t ([11, p. 173]) and D2 ∈
L(X2 , Z), the results in Sections II–IV are still valid, where D(K)
denotes domK with the norm ‖ · ‖1 (for more details, see [11, p. 173]).
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V. ILLUSTRATIVE EXAMPLE

In this section, we discuss the approximate controllability and ap-
proximate observability of the Dzektser equation.

Consider the Dzektser equation, which describes the evolution of
the free surface of Seepage liquid (see, e.g., [17])(

1 +
∂2

∂ξ2

)
∂

∂t
x(ξ, t) =

(
∂2

∂ξ2 + 2
∂4

∂ξ4

)
x(ξ, t) + u(t)

(ξ, t) ∈ (0, π) × [0, +∞) (21)

x(0, t) =
∂2

∂ξ2 x(0, t) = x(π, t) =
∂2

∂ξ2 x(π, t) = 0

t ∈ [0, +∞), x(ξ, 0) = x0 (ξ), ξ ∈ (0, π) (22)

y(ξ, t) = x(ξ, t), (ξ, t) ∈ (0, π) × [0, +∞). (23)

Let

X = {x ∈ W 2 ,2 (0, π) : x(0) = 0, x(π) = 0}
Y = L2 ((0, π), R)

E = 1 +
∂2

∂ξ2 , A =
∂2

∂ξ2 + 2
∂4

∂ξ4

domA = {x ∈ W 4 ,2 (0, π) : x(0) = x′′(0) = x(π) = x′′(π) = 0}
(x(t))(ξ) = x(ξ, t), (Bu)(ξ) = bu, ξ ∈ (0, π), u ∈ U = R

b = 1 ∈ Y, where the meanings of Sobolev spaces W 2 ,2 (0, π) and
W 4 ,2 (0, π) are the same as in [21, Ch. 3]. Then, E ∈ L(X, Y ), A ∈
CD (X, Y ) and Dzektser (21)–(23) can be reduced to the following
system:

Eẋ(t) = Ax(t) + Bu(t), x(0) = x0 (24)

y(t) = x(t). (25)

It is easily checked that sin(kξ) is the E-eigenvector of the operator
A corresponding to E-eigenvalue −k2 (1 + k 2

k 2 −1 ) of the operator A
(k = 2, 3, . . .);

E sin ξ = 0; A sin ξ = sin ξ

E sin(kξ) = (1 − k2 ) sin(kξ)(k = 2, 3, . . .)

A sin(kξ) = (2k4 − k2 ) sin(kξ)(k = 2, 3, . . .)

and

1 =
+∞∑
k=1

< 1, sin(kξ) >Y

< sin(kξ), sin(kξ) >Y

sin(kξ)

=
4
π

sin ξ +
+∞∑
k=2

4 sin((2k − 1)ξ)
(2k − 1)π

, ξ ∈ (0, π).

Let X1 be the closure of the subspace

span{sin(kξ) : k = 2, 3, . . .}

=

{
x1 ∈ X : ∃ak ∈ R, k = 2, 3, . . . , x1 =

+∞∑
k=2

ak sin (kξ)

× ‖x1‖X < +∞
}

in the norm of the space X ; X2 = span{sin ξ}. Then, X2 is one-
dimensional. Let E1 and A2 denote the restrictions of E and A on X1

and X2 , respectively. Then,

K sin(kξ) = E−1
1 A sin(kξ)

= −k2
(

1 +
k2

k2 − 1

)
sin(kξ), k = 2, 3, . . .

domK = span{sin(kξ) : k = 2, 3, . . .}

b1 = E−1
1

+∞∑
k=2

< 1, sin(kξ) >Y

< sin(kξ), sin(kξ) >Y

sin(kξ)

= E−1
1

(
1 − 4

π
sin ξ

)

=
+∞∑
k=2

4
(2k − 1)π

E−1
1 sin((2k − 1)ξ)

=
+∞∑
k=2

4 sin((2k − 1)ξ)
[1 − (2k − 1)2 ](2k − 1)π

b2 = A−1
2

< 1, sin ξ >Y

< sin ξ, sin ξ >Y

sin ξ =
4
π

sin ξ

the regular standard form of (24)–(25) is

ẋ1 (t) = Kx1 (t) + B1u(t), x1 (0) = x10 (26)

0 = x2 (t) + B2u(t), x2 (0) = x20 (27)

y(t) = x(t) =

[
x1 (t)

x2 (t)

]
(28)

where [ x 1 (t)
x 2 (t) ] ∈ X1 × X2 , K ∈ CD (X1 ), N = 0 in (27), B1u = b1u,

B2u = b2u. Since X2 = ran[B2 ], conditions of Theorems 3 and 4
guarantee that (21)–(22) is approximately controllable on [0, T ] for
some T > 0 if and only if (26) is approximately controllable. It is
obvious that the strongly continuous semigroup associated with (26) is
given by

eK t η =
+∞∑
k=2

e
−k 2

(
1+ k 2

k 2 −1

)
t < η, sin(kξ) >X

< sin(kξ), sin(kξ) >X

sin(kξ).

Since eK t = eK ∗t , by (ii) of Theorem 2, the condition for approxi-
mate controllability is that there exists T > 0 such that B∗

1e
K ∗t η = 0

on [0, T ] ⇒ η = 0. In fact, for any T > 0, if B∗
1e

K ∗t η = 0 on [0, T ],
then

eK ∗t η =
+∞∑
k=2

e
−k 2

(
1+ k 2

k 2 −1

)
t < η, sin(kξ) >X

< sin(kξ), sin(kξ) >X

sin(kξ)

= 0, ξ ∈ (0, π), ξ 	= arcsin
π

4
.

Since sine series

+∞∑
k=2

e
−k 2

(
1+ k 2

k 2 −1

)
t < η, sin(kξ) >X

< sin(kξ), sin(kξ) >X

sin(kξ)

is uniformly convergent on [0, π] for every t ∈ (0, T ], we have

+∞∑
k=2

e
−k 2

(
1+ k 2

k 2 −1

)
t

(
< η, sin(kξ) >X

< sin(kξ), sin(kξ) >X

× < sin(kξ), sin(mξ) >X

)
= 0.

Authorized licensed use limited to: CAS Academy of Mathematics & Systems Science. Downloaded on September 07,2020 at 07:28:41 UTC from IEEE Xplore.  Restrictions apply. 



IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 65, NO. 5, MAY 2020 2299

By the orthogonality of the sine function system {sin(kξ) : k =
2, 3, . . .} on [0, π], we get < η, sin(mξ) >X = 0, m = 2, 3, . . . . Since
η ∈ X1 , we have < η, sin ξ >X = 0, i.e., η = 0. Hence, the Dzek-
tser equation (21)–(22) is approximately controllable on [0, T ] for any
T > 0.

From Definition 4 and (28), (26)–(28) is approximately observable
on [0, T ] for any T > 0. Hence, Dzektser equation (21)–(23) is ap-
proximately observable on [0, T ] for any T > 0.

VI. CONCLUSION

We have defined approximate controllability and approximate ob-
servability and proved corresponding necessary and sufficient condi-
tions for regular singular distributed parameter systems. The obtained
results are very important and convenient for studying the approximate
controllability and approximate observability of singular distributed
parameter systems. An illustrative example was given, which shows
the effectiveness of Theorems 4 and 5. For a specific singular dis-
tributed parameter system, appropriate controllability can be defined
according to the needs of various optimal control problems.
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